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We have studied the lattice dynamics of crystalline TiO2 using density-functional perturbation theory and the
local-density approximation in a plane-wave pseudopotential formalism at equilibrium and uniaxially strained
geometries. We present well-converged calculations of the dispersion curves, which sample a more complete
volume of the Brillouin zone than in previous studies. We find an anomalously soft TA mode in a region of
reciprocal-space previously unexplored either by any previous calculation or experiment. This is quite separate
from the A2u mode which becomes soft at the � point and is responsible for the incipient ferroelectric behavior.
The harmonic frequency of the soft TA mode around q= � 1

2 , 1
2 , 1

4 � decreases to zero under an isotropic expan-
sion with a strain slightly above 0.5% and we suggest that it may be possible to observe anomalous diffuse
inelastic scattering corresponding to a dynamical instability using neutron scattering. In addition to the soft-
ening under isotropic strain, the frequency of this mode goes to zero under uniaxial strain along the �110�
direction in both compression and expansion �at close to −0.5% and +1.0%, respectively�, which offers new
possibilities for experimental tests of softening under compressional strain. We further suggest that the soft TA
mode may help explain the anomalously long-ranged convergence observed in previous calculations on slab
models of the TiO2 �110� surface by providing a mechanism for small changes in bonding at the surface to
propagate deep into the bulk. The behavior of other modes under strain was also studied. The ferroelectric A2u

mode frequency is nearly independent of �110� strain, which contrasts with the behavior in response to �001�
strain reported in the literature of a strong dependence. However, the frequency of the Raman-active B2g mode
does decrease to zero frequency under 1.3% strain, which should be observable using Raman spectroscopy.
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I. INTRODUCTION

The extraordinarily complex range of behavior exhibited
by TiO2 has motivated a huge variety of experimental and
theoretical studies by physicists, chemists, surface scientists,
and materials scientists for many years. Pure stoichiometric
TiO2 has a rich phase diagram and there is still controversy
regarding which of the rutile or anatase phases is the more
stable under ambient conditions. It is an exemplar of
transition-metal oxide behavior and the canonical system of
surface science.1 It is widely used in a diverse range of tech-
nological and industrial applications ranging from pigments,
battery electrolytes, catalysis, solar cells, gas sensors, and
optical coatings to name but a few. It is therefore no surprise
that the properties of TiO2 in the rutile crystal structure have
been the subject of numerous experimental and theoretical
investigations.

TiO2 in the rutile crystal structure is an incipient ferro-
electric, and has a large and strongly temperature-dependent
dielectric constant. The consequent high refractive index of
bulk and thin films is the basis of its utility in many techno-
logical applications, notably for optical antireflective coat-
ings, dielectric mirrors, and pigments. A possible low-
temperature ferroelectric phase transition was postulated on
the basis of the low-temperature behavior of the experimen-
tal dielectric permittivity but has not been observed.2 The
microscopic origin of these dielectric properties has been in-
vestigated in a number of studies of the lattice dynamics
using either force field approaches �Ref. 3, and references
therein� or ab initio methods based on density-functional
theory �DFT�.4–7

The first lattice-dynamics study of rutile TiO2 based on ab
initio calculations is that by Lee et al.4 In a comprehensive
study based on density-functional perturbation theory
�DFPT� �Ref. 8� they calculated phonon frequencies at the �
point which are in agreement with infrared and Raman spec-
troscopic measurements, and Born effective charges and di-
electric permittivity, also in good agreement with experimen-
tal values. The high dielectric constant was shown to be a
consequence of a low-frequency �176 cm−1 in their calcula-
tions�, “soft” A2u mode and large Born effective charges �up
to 7.3e−7.5e for Ti�. Were the frequency of this mode to
decrease to zero, it would correspond to the postulated ferro-
electric phase transition, but it was found to have a positive
frequency even in the athermal, 0 K limit.

Montanari and Harrison5,6 focused on the behavior of the
ferroelectric, transverse-optical �TO� A2u mode. They dem-
onstrated that this mode becomes soft at the � point if the
lattice is expanded, either directly as a result of a negative
effective pressure5 applied to the local-density approxima-
tion �LDA�-optimized structure, or via the usual generalized
gradient approximation �GGA� overestimate of the lattice
parameter.6 By applying a uniaxial expansive strain in the
�001� direction, they predicted that the A2u mode frequency
should decrease to zero under a 3% expansive strain.

The ab initio studies mentioned above were confined to
modes at the � point. The only ab initio investigation for
other wave vectors that we are aware of is that of Sikora,7

who used LDA calculations and a supercell-force-constant-
matrix approach to compute phonon frequencies at several
symmetry points of the Brillouin zone �BZ�,7 and the disper-
sion curves along a number of high symmetry directions in
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the BZ. �The lattice dynamics of the other low-pressure poly-
morph of TiO2, anatase, has also been investigated using
density-functional perturbation theory.9�

We present here an ab initio DFPT study of the lattice
dynamics of rutile TiO2 under the local-density approxima-
tion and using the plane-wave pseudopotential method. Our
calculations include all long-ranged Coulomb interactions
and nonanalytic terms responsible for LO-TO splitting, es-
sential for a correct description of the dielectric properties.
We have calculated accurate phonon dispersion curves which
include regions of the Brillouin zone not sampled in any
previous calculation. As a result, we have discovered a hith-
erto unsuspected, and large, volume of reciprocal space
where the TA mode is extremely soft. We will investigate
this mode in some detail and discuss possible experiments to
detect the softening.

Inspired by the work of Montanari and Harrison5 we also
seek to identify potential soft-mode phase transitions as a
function of strain. In this endeavor we have searched for
completely soft modes within the entire Brillouin zone in-
cluding the soft region around � 1

2 , 1
2 , 1

4 �, and computed the
response of the lattice dynamics to both isotropic and
uniaxial applied strains �previous published work considered
only uniaxial and �001� strains which preserve the tetragonal
symmetry�. In addition to uniform strain, we also consider
�110� strains in both compression and expansion, which
break the tetragonal space-group symmetry. The consequent
splitting of the doubly degenerate soft TA mode allows the
possibility of achieving a complete softening under compres-
sive as well as expansive strain, a situation which could be
more easily realized experimentally.

II. METHODS

The calculations used plane-wave pseudopotential imple-
mentation of DFPT as implemented in the CASTEP code.10,11

With one exception the calculations were performed using
the LDA �CA-PZ� �Ref. 12� functional. Montanari and Har-
rison showed that the LDA gives a better description than
GGA of the ferroelectric mode, which has an imaginary fre-
quency at the equilibrium GGA lattice parameters.6

Pseudopotentials were created using the “optimized”
method of Rappe et al.13 The Ti pseudopotential was con-
structed to leave the semicore 3s and 3p states as valence as
in Refs. 4 and 14 with core radii r_c=1.32�3s� 1.45�3p�
1.53�3d� tuned to also give an accurate 4s pseudo wavefunc-
tion. The d projector was used as the local component. The
oxygen pseudopotential was an optimized potential using the
method of Lin et al.15 with r_c=1.4 a.u. and a separate
mixed local component. Both pseudopotentials are fairly
hard and a plane-wave cutoff of 1100 eV was used yielding a
maximum error in forces of �1 meV /Å and stress of
�0.011 GPa. The electronic sampling of the BZ was per-
formed using a 4�4�6 grid of k points using the
Monkhorst-Pack scheme,16 at which level forces are con-
verged to better than 0.4 meV /Å and stresses to 0.01 GPa.
Comparison of structural parameters with other accurate cal-
culations �Table I� shows this combination to be of high ac-
curacy.

Equilibrium lattice parameters were determined using the
Broyden-Fletcher-Goldfarb-Shanno �BFGS� algorithm which
optimized both the cell parameters and internal coordinates
simultaneously. A finite-basis set correction24 was used to
compensate for the error caused by Pulay stresses.

Phonon-dispersion curves were calculated using density-
functional perturbation theory in conjunction with the
method of Fourier interpolation of dynamical matrices.8,25

The cumulant sum method of Parlinski26 was used to con-
struct the aperiodic force constant matrix in real space. In
this case of rutile TiO2 a 5�5�7 grid of q vectors gave
interpolation error over the entire BZ of less than 13 cm−1

with a mean error per q point �3 cm−1. When plotting the
dispersion curves we used a very fine sampling of the
q-space path combined with an algorithm which uses eigen-
vector matching to correctly determine crossing or avoidance
behavior where branches meet. This gives a high degree of
confidence in the connectivity of our dispersion curves. The
nonanalytic contribution to the dynamical matrix which de-
scribes LO-TO splitting at the � point was calculated from
Born effective charges and dielectric permittivities obtained
using DFPT response to an electric field.25

III. RESULTS

A. LDA equilibrium structure and �-point phonons

The optimized cell parameters are listed in Table I to-
gether with previous literature results. Our calculated lattice
parameters are slightly smaller �0.01–0.02 Å� than those
from a low-temperature neutron-diffraction experiment,19 as
expected from the LDA. The magnitude of the error due to
the pseudopotential approximation may be obtained from a
comparison with projector augmented wave �PAW� and with
all-electron �AE� full-potential linearized augmented-plane-
wave �FP-LAPW� calculations20,21 and there is agreement in
the lattice parameters to around 0.5%. Born effective charges
are in agreement with previous pseudopotential calculations
at the level of 3% or better but dielectric permittivities differ
by around 5%.

There are small but significant discrepancies with equilib-
rium lattice parameters obtained in some of the earlier
pseudopotential calculations,4 which were lower than the all-
electron LDA values by approximately the same degree as
the overestimation in our calculation. The origin of this dis-
crepancy is probably associated with the different methods of
pseudopotential generation used �optimized Rappe-Rabe-
Kaxiras-Joannopoulos �RRKJ� in our case and Troullier-
Martins in the earlier calculation�. Adjusting the core radii of
the pseudopotential and employing a “designed nonlocal”27

projector scheme made very little difference to the optimized
structure. Using the FP-LAPW values 4.558 Å and 2.920 Å
as estimates for the converged a and c parameters at the
all-electron LDA level, we note that our parameters are about
0.3% and 0.8% too large, respectively. We have therefore
also calculated the phonon frequencies for a uniformly con-
tracted structure �by 0.5%�, and Tables II and III list the
computed frequencies at the � point and at several high-
symmetry points on the Brillouin-zone boundary, respec-
tively.
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The �-point frequencies listed in Table II exhibit unsatis-
factorily large discrepancies between different calculations
given that all aim to reproduce the limiting value within the
LDA. Nevertheless some trends can be observed and conclu-
sions drawn. The physical approximation which differs
among these and our calculations is the pseudopotential ap-
proximation and the detailed recipe used for construction of
the pseudopotentials. �It is unlikely that inadequate conver-
gence is responsible for the variation. Our computed fre-
quencies are converged with respect to both plane-wave cut-
off and Brillouin-zone sampling to 2 cm−1 or better for most
modes and at worst 5 cm−1. Most of the previous calcula-
tions appear similarly well converged.� The origin of much
of the variation can be attributed to the secondary effect of
the different equilibrium lattice and internal parameters re-
sulting from the different pseudopotentials. Table II demon-
strates the effect of performing a calculation under a uniform
compressive strain of −0.5%, which brings the frequencies
into much closer agreement with the all-electron FP-LAPW
results. The largest errors remain in the B1g, Eu, and A2u
modes which all have very large pressure dependencies and
mode Gruneisen parameters.5 These results suggests that the
best approximation to all-electron LDA values from our
pseudopotentials is obtained at −0.5% strain.

B. Phonon-dispersion relations

Phonon-dispersion curves obtained using Fourier interpo-
lation of dynamical matrices along selected high-symmetry

directions in the Brillouin zone are plotted in Fig. 1. It is
evident that the experimental frequencies are reproduced to
an accuracy of 20 cm−1 or better by our LDA pseudopoten-
tial calculation with the exception of the �-Z transverse-
acoustic branch where the discrepancy rises to nearly
40 cm−1.

An unexpected feature apparent in the dispersion curves
shown in Fig. 1, is that the lowest-frequency mode is the
transverse-acoustic mode at the Brillouin-zone boundary
along the M-A direction, at roughly q= � 1

2 , 1
2 , 1

4 � with a fre-
quency of 42 cm−1. This feature of the lattice dynamics has
not been previously reported, as no published calculation or
experiment has explored this region of the Brillouin zone. A
similar feature has been reported in some unpublished
calculations.31 It will be shown that this mode may have
important consequences for the relative structural stability of
the rutile and anatase phases, for the behavior of surfaces and
may be detectable in experiment. It is therefore important to
establish that this phenomenon is a correct prediction of
density-functional theory within the LDA, and is not an ar-
tifact of pseudopotential error or interpolation error �conver-
gence error has already been ruled out�. To this end we have
performed additional DFPT calculations of the phonon-
dispersion curves using an alternative norm-conserving
pseudopotential for Ti. This was constructed with larger core
radii and used the “designed nonlocal” method to ensure
accuracy of the 4s wave functions.27 The resulting dispersion

TABLE I. Calculated and reference structural parameters, Born effective charges �principal values� Z� �e�
and dielectric permittivity �c

� of TiO2 rutile.

a �Å� c �Å� u c /a � �Å3�

This work 4.572 2.943 0.304 0.644 61.520

X ray 100 Ka 4.582 2.953 0.305 0.644 61.997

X ray 298 Kb 4.594 2.959 0.305 0.644 62.432

Neutron 15 Kc 4.587 2.954 0.305 0.640 62.154

AE-FLAPW-LDAd 4.558 2.920 0.304 0.641 60.664

LCAO-LDAe 4.555 2.929 0.304 0.643 60.771

PW-LDA �PAW�e 4.557 2.928 0.304 0.643 60.804

PW-LDAf 4.536 2.915 0.304 0.643 59.980

PW-LDAg 4.545 2.919 0.304 0.642 60.298

PW-LDAh 4.567 2.933 0.304 0.642 61.189

Ti �

Z�110�
� Z�11̄0�

�
Z�001�

� �a,b
� �c

�

This work 7.492 5.425 7.768 7.950 9.212

FLAPWd 7.19 5.20 7.70

LDAe 7.372 5.322 7.752

LDAf 7.335 5.343 7.541 7.535 8.665

Expt.i 6.843 8.427

aReference17.
bReference 18.
cReference 19.
dReference 20.
eReference 21.

fReferences 4 and 22.
gReference 6.
hReference 7.
iReference 23.
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curve �see supplementary material32� does not differ signifi-
cantly and the anomalous soft mode is still present. We also
performed finite-difference phonon calculations in a super-
cell using very accurate Vanderbilt ultrasoft pseudopoten-
tials. These yielded structural parameters of a=4.553, c
=2.921, u=0.304 which are within 0.1% of the all-electron
LAPW values of Table I. The acoustic-phonon frequencies at
M, � 1

2 , 1
2 , 1

4 � and A are 59 cm−1, 31 cm−1, and 91 cm−1, re-
spectively, compared to 71, 47, and 83 cm−1 for the our
DFPT calculation using norm-conserving pseudopotentials.
�For full set of computed frequencies see supplementary
material.32� The midsegment softening is therefore robustly
reproduced and if anything our DFPT calculations underes-
timate its magnitude.

Our dispersion curves show a flattening toward � of the
high-frequency modes along �-Z and �-M, and the shape is
in good agreement with the inelastic neutron-scattering �INS�
measurements except for a small rigid downshift in fre-
quency. There is no sign of the overbending reported by
Sikora7 along these directions or along the LA mode toward
the M point. Our result shows that this mode does not cross
the flat B1u mode but becomes degenerate with it only at the
M point itself. Along direction �-X we see an almost disper-
sionless topmost B2g mode at 805 cm−1, which becomes de-
generate with the LO Eu mode at the M point. These two

branches are downshifted with respect to experimental mea-
surements, as already noted at the � point, but the shape is in
reasonable agreement. Again there is disagreement with the
result of Sikora �Fig. 1 in that paper�, which shows a disper-
sion of around 50 cm−1 in both modes, and a strong over-
bending in the topmost mode. Along �-Z, the dip in the
curve at around �0,0,1

3 � observed in the experiment is well
reproduced in our calculations, although the overall fre-
quency is uniformly lower than experimentally observed.

TABLE II. Calculated and experimental phonon frequencies � �cm−1� of TiO2 rutile at the � point. The corresponding deviations from
the FPLAPW results are given in parentheses. Experimental frequencies in square brackets denote low-temperature measurements.

Mode PBEa PW91a LDAa LDAb FLAPWc LDAd Neutrone
IR&

Ramanf,g This work 0% This work −0.5%

Raman

B2g 775 781 825� +9� 828�+12� 816 801�−15� 825 827 805�−11� 823� +7�
A1g 566 572 612� 0� 623�+11� 612 616� +4� 610 612 �611� 601�−11� 617� +5�
Eg�2� 429 434 463� −1� 472� +8� 464 472� +9� 445 447 �455� 457� −7� 469� +6�
B1g 154 152 137� −1� 125�−13� 138 132� −6� 142 143 �143� 130� −8� 115�−23�

Silent

A2g 424 425 422� +6� 416� −1� 416 413� −3� Not found 405�−11� 407� −9�
B1u 358 363 393� −5� 408� +9� 398 418�+19� 406 385�−13� 401� +2�
B1u 79 99 104� −8� 117� +5� 112 118� +6� 113 101�−11� 112� +1�

Infrared

Eu�TO� 469 472 488� +1� 493� +6� 487 499�+12� 494 500 476�−12� 485� −2�
Eu�TO� 354 357 384� −1� 391� +7� 385 393� +9� Not found 388 375�−10� 388� +4�
Eu�TO� 124 127 191�+35� 165� +8� 156 144�−13� 189 183 127�−29� 146�−10�
A2u�TO� i86 47 154� +1� 176�+23� 153 192�+39� 173 �142� 167 �144� 126�−27� 164�+11�

A2u�LO� 769�−15� 784 801�+17� 811 749�−35� 761�−23�
Eu�LO� 808� +1� 808 788�−20� 807 842 782�−26� 803� −5�
Eu�LO� 442� +1� 441 435� −6� 458 429 432� −9� 439� −2�
Eu�LO� 352� −4� 355 353� −2� 373 375 342�−13� 341�−14�

aReference 6.
bReference 4.
cReference 20.
dReference 7.

eReference 28.
fReference 29.
gReference 30.

Γ X R Ζ Γ M A Z
0

200
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800

ω
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m
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)

FIG. 1. Calculated phonon dispersion of TiO2 rutile compared
with inelastic neutron-scattering experiment �Ref. 28�.
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An explanation of the general observation that many
modes in our calculation display much smaller dispersion
than in the calculation of Sikora �not only the topmost modes
and the �-M TA mode but throughout the frequency spec-
trum and BZ� can be found in consideration of the behavior
of long-ranged tails of the interatomic force constants. Siko-
ra’s calculation used a supercell which faithfully represents
force constants out to a distance of some 4.5 Å in the plane

and 3 Å in the c direction without aliasing errors. By con-
trast, our calculation using an interpolation from a grid, con-
siders force constants out to over 11 Å in all directions, and
is almost fully converged. Ackland et al.33 showed that in the
case of the phonon dispersion of silicon, it is necessary to
include force constants out to sixth neighbors to correctly
reproduce the flat approach of the TA branch to the X point,
and that truncating the force constant matrix at a smaller

TABLE III. Calculated in this work, reference LDA calculation �Ref. 7� and experimental �Ref. 28� phonon frequencies � �cm−1� of TiO2

rutile at the high-symmetry points X, M, Z, A, and R of Brillouin zone.

X M Z A R

This work LDA Expt. This work LDA Expt. This work LDA Expt. This work LDA This work LDA

Optical modes

92 109 103 76 106 102 245 248 192 223 85 136

275 281 269 227 241 261 275 281 302 253 259 213 223

287 318 301 295 304 314 307 318 324 256 261 305 310

315 324 305 297 332 315 384 431 411 446 470 378 422

369 381 392 333 360 449 452 414 463 483 480 498

461 481 451 459 475 452 477 514 469 486 518 523

548 572 523 542 545 567 478 504 548 588

800 806 847 775 760 776 698 709 705 721 673 681

Acoustic modes

89 109 103 77 73 98 84 104 123 80 97 84 105

184 193 194 87 106 102 447 431 414 463 �465�a 126 136

aThe number in brackets is taken from the graph instead from the table published in Sikora’s paper Ref. 7, Table 3.

Γ X R Ζ Γ M A Z
-50

0

50

100

150

200

ω
(c

m
-1

) Ζ Γ M

0.0%

0.5%

0.75%

1.0%

0.5%
isotropic
expansion

A
2u

-0.5%

FIG. 2. �Color online� Calculated phonon dispersion of TiO2 rutile under uniform isotropic expansion. Inset shows behavior of A2u mode
at 0.5% expansion.
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radius has the effect of erroneously predicting too large a
dispersion. The long-ranged nature of the force constant ma-
trix was attributed to the strong covalent bonding network in
silicon. Clearly a similar effect operates in rutile TiO2 which
suggests that a substantial degree of covalency is present. It
appears that the dispersion curves plotted by Sikora suffer
from aliasing error and can only be considered accurate for
wave vectors at the Brillouin-zone center and boundaries.

C. Behavior of the soft acoustic mode

1. Uniform expansion of the lattice

Given that the incipient ferroelectric behavior of rutile
TiO2 has been of considerable interest, and the prediction of
Montanari and Harrison of a hypothetical phase transition
upon application of an expansive strain there is clearly a
strong motive to investigate whether the softening near q
= � 1

2 , 1
2 , 1

4 � could lead to any new phenomena. We have there-

fore studied the effect on the frequencies of applying an iso-
tropic strain to the unit cell. Expansions of 0.5%, 0.75%, and
1.0% of the a and c lattice parameters were considered and
the internal coordinate, u, was optimized at each strain. The
region of the spectrum below 200 cm−1 is shown in Fig. 2.
More complete dispersion curves are deposited as additional
material. As established in previous work, the A2u mode at �
has a large mode Gruneisen parameter of 13.5 and becomes
soft at 0.75% expansion. However the onset of mechanical
instability is not governed by this mode but rather by the
acoustic mode in the region of � 1

2 , 1
2 , 1

4 � which becomes soft
at a strain of 0.5%. The second dip observed in the LA mode
halfway along the �-Z branch also drops to zero frequency
at 0.75% strain.

The existence of soft modes under expansion at two
points of low symmetry raises the question of the behavior at
other wave vectors not plotted in Fig. 1 and 2. To investigate
this we computed the frequencies on a grid of wave vectors
in order to map the extent and shape of the soft region of
reciprocal space. �The Fourier interpolation lattice-
dynamical method is not restricted to the high-symmetry di-
rections and allows the mapping of modes across the entire
Brillouin zone at insignificant additional computational cost.�
Figure 3�a� shows a contour and three-dimensional plot of
frequencies for a 0.5% expansion projected along the plane.
A “valley” of low frequencies extends along the direction
joining the “dip” halfway along M-A to that halfway along
�-Z. It can be seen that the lowest frequency does not lie on
any point of symmetry but close to �0.3625,0.3625,0.2768�.
An alternative representation of the soft region is shown in
Fig. 3�b�, where it can be seen that the lowest frequencies are
found in a cigar-shaped region with its long axis along
�0,0,1�. At 0.75% expansion this region has elongated to a
cylinder which touches the c� axis along �-Z, where the
acoustic mode becomes soft at roughly �0,0,1

3 �. The ferro-
electric A2u mode only reaches zero at 0.75% expansion.

Thus the first onset of a soft mode in TiO2 upon expansive
strain does not occur for the ferroelectric A2u mode at the �
point but on a cylinder of reciprocal space centered around
�0.3625,0.3625,0.2768� and lying along �001�. Given that the

FIG. 3. �Color online� �a� Variation in TA mode frequency
across Brillouin zone showing minimum at low-symmetry point
slightly offset from M-A midpoint. �b� Three-dimensional locus of
lowest-frequency region of TA mode showing a cigar-shaped region
of low frequency.

FIG. 4. �Color online� Eigenvectors of soft mode at � 1
2 , 1

2 , 1
4 �

point shown in 2�2�4 supercell.
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0.5% compressive strain frequencies are in best agreement
with experiment, it is most likely that the onset of any elastic
instability would occur at an expansive strain between 0.75%
and 1%.

The eigenvectors of the soft mode at q= � 1
2 , 1

2 , 1
4 � are plot-

ted in a 2�2�4 supercell in Fig. 4, which shows that the
atomic displacements of all atoms are directed parallel to the
�110� direction and consist mainly of a displacement of the
Ti atoms relative to the oxygen octahedra, which are only
slightly distorted. Alternate planes are moving in antiphase
and the motion within each plane consists of an in-plane
antiphase shearing of pairs of layers. An animation of this
mode is included in the supplementary material32 as well as
full dispersion plots for the strained calculations described
above.

2. Mode potential-energy surface

All the frequencies above are computed using the har-
monic approximation, which however breaks down in the
vicinity of a phase transition. To investigate further what
predictions can be made of the physical behavior consequent
to this softening we investigated in detail the shape of the
potential-energy curves involved. Frozen phonon calcula-
tions were used to map the potential-energy surface for the
soft acoustic mode at a wave vector of q= � 1

2 , 1
2 , 1

4 � and the
result is plotted in Fig. 5. As might be expected a double-
well potential appears with a minimum located at a maxi-
mum Ti displacement of 0.065 Å and a depth of only 2.5
meV.

This is clearly a substantially anharmonic mode potential-
energy surface and the assumptions of harmonic lattice-
dynamics theory break down for this mode. A proper anhar-
monic treatment of the quantum-mechanical nuclear motion
would yield the nuclear wave function and excitation ener-
gies of the transitions, corresponding to frequencies which
could be experimentally observed. A full quantum-
mechanical calculation would involve computing the multi-

dimensional potential-energy surface and solving the
Schrödinger equation for all of the relevant degrees of free-
dom. �At least two for this degenerate mode.� Such a calcu-
lation is beyond the scope of this work but a few conclusions
on the character of the solution which arise from general
principles may be relevant. Anharmonic quantum oscillator
models in potentials with shallow double wells tend to yield
singly peaked and centered solutions, and no symmetry
breaking is predicted. In this case the well depth of 2.5 meV
is much smaller than the thermal energy predicted by the
equipartition theorem for an individual mode of roughly 25
meV at 300 K. This would tend to suggest that no phase
transition will be observed even substantially below room
temperature. However these conclusions, based on a one-
dimensional oscillator model, will be modified by the degen-
erate pair of modes and coupling to the other lattice modes.
This must, in principle, alter the potential-energy surface and
may give rise to unexpected behavior.

3. Uniaxial strain

The possibility that some interesting consequences for
materials properties might result from the softening of the
acoustic branch away from the � point motivated us to con-
sider what mechanisms might drive this mode to zero fre-
quency. There are clear obstacles to any experimental mea-
surement of the softening under uniform dilation. This can be
achieved by thermal expansion but high temperatures would
make inelastic experiments difficult. And any latent soft-
mode phase transition to a lower symmetry phase would be
thwarted by thermal motion. Alternatively, doping with a
larger cation or anion could also cause expansion but in this
case the mass defect effect is likely to be large and not sepa-
rable from the volume effect. However, uniaxial strains may
be generated experimentally by thin-film deposition on a
substrate which may be “bent” to apply either a compressive
or expansive strain.34 Montanari and Harrison showed that
the A2u mode frequency has a strong dependence uniaxial
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strain along the �001� axis, decreasing to zero at +3% strain.
However, the �110� direction is probably more relevant to
many experiments as it is perpendicular to the most common
cleavage plane and most stable surface plane. A strain along
the in-plane �110� axis breaks the C4 symmetry axis and
unlike the �001� strain splits the degenerate mode. Such split-
ting must decrease the frequency of one or other of the for-
merly degenerate modes under infinitesimal strain, which
motivates a study of their behavior under finite strain.

We performed simulations under applied uniaxial strains
along �110� of −1%, −0.5%, and 0.5%. The internal coordi-
nates were fully relaxed and the lattice dynamics was recom-
puted. The results are plotted in Fig. 6. As anticipated, the
degenerate mode is split in the strained calculations. One of
the split modes decreases to zero frequency under uniaxial
expansion as it does under uniform expansion. But in addi-
tion, the other of the pair also becomes soft under compres-
sive strain. This raises new experimental possibilities for a
physical realization of the soft mode. A 1% compression
would occur at 2.7 GPa, well within the range achievable by,
for example, a Paris-Edinburgh cell as used in inelastic neu-
tron scattering. While high-pressure INS experiments under
controlled anisotropic strain are not common, it is possible
that such an experiment could be feasible.

According to the most recent experimental evidence �Ref.
35, and references therein�, uniaxial expansion perpendicular
to �110� also occurs experimentally as a consequence of out-
ward relaxation at the �110� surface, which otherwise retains
very similar to the cleaved bulk.36 Bredow et al.37 predicted
an outward relaxation of the second �110� surface layer of
around 0.5% using ab initio DFT methods, and there is ex-
perimental evidence of expansion in TiO2 nanocrystals.38 It
is plausible that our predicted bulk soft mode might have an
analogous mode at the TiO2 �110� surface and that relaxation
of surface layers could precipitate softening behavior. Soft
behavior has actually been observed as a function of tem-
perature in �110� TiO2 using time-of-flight He atom surface
scattering.36 That study probed only surface modes and the
relationship to the bulk phonons in the present study would
only be possible to establish by much more expensive direct
ab initio calculations of lattice dynamics of the surface
which are beyond the scope of the present work. It is not
possible to conclude that any of the theoretical predictions of
soft modes have been experimentally confirmed. However,
the experimental evidence does point to behavior which is
plausibly related but which would need further theoretical
work to establish a truly comparable prediction.

D. Behavior of the ferroelectric A2u mode

The softening behavior of the A2u ferroelectric mode un-
der expansive strain or negative pressure has previously been
discussed in considerable detail.5 Nevertheless an examina-
tion of the q dependence of this mode allows us to expand on
this previous work and reveals a hitherto unsuspected rich-
ness of behavior.

The ferroelectric A2u mode has a large Gruneisen param-
eter, and its frequency drops from 126 cm−1 at 0% expan-
sion to 76.9 cm−1 at 0.5% uniaxial expansion, where it dips

below the B1u mode. However, it can be seen in the inset of
Fig. 2. that despite its larger dispersion, it does not cross the
B1u mode but instead these two modes mix and have an
avoided crossing very close to � at �0.04,0.04,0�. The B1u
mode becomes connected to a mode rising to nearly
300 cm−1 at M and A2u connects to the higher of the two
acoustic branches at M. At a larger expansion of 0.75%, the
A2u mode drops to less than 9 cm−1, which is the onset of
softening within the accuracy of this calculation. At this ex-
pansion the two transverse-acoustic branches have become
almost degenerate all the way from � to M. This degeneracy
allows yet another exchange of mode character along the
�-M line as the expansion is increased to 1.0%, where the
A2u mode has mixed with one of the TA modes where they
became degenerate at the M point and again switched con-
nectivity between the one TA mode and the other. At this, the
highest positive strain we considered, the very highly kinked
avoided crossing is still present but is now between a TA
mode and the B1u mode at 50 cm−1. The A2u mode now rises
smoothly to join the TA modes at M.

We also calculated the response of the A2u and other
modes at the � point to a uniaxial strain along �110�. The
result is reported in Fig. 7. In contrast to the behavior re-
ported by Montanari and Harrison5 where the A2u mode fre-
quency showed a strong dependence on the amplitude of a
�001� strain, indeed approaching zero at 3% strain, we find
very little sensitivity to a �110� strain. It can be seen, how-
ever, that the inactive B2u mode and the Raman-active B2g
mode do exhibit a strong response to strain in this direction,
becoming soft at 1.6% and 1.3% expansive strain, respec-
tively.

IV. DISCUSSION

A. Consequences of the bulk soft mode

We now consider the observable consequences the pre-
dicted bulk soft mode near q= � 1

2 , 1
2 , 1

4 �. Our calculations do
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not predict a soft-mode phase transition under easily realized
experimental conditions. Although a lattice expansion of
0.5% can be induced by heating to around 600 °C the ther-
mal energy per mode of roughly 75 meV is considerably
larger than the well depth of 2.5 meV which is sufficient to
ensure that no symmetry breaking by the double well will
occur. Indeed it is probable that zero-point energy would be
sufficient to symmetrize the wave function of the quantum
oscillator of the mode at low temperatures even if a low-
temperature expansion of the lattice could be achieved. How-
ever, it might be possible to measure the anharmonicity of
the mode using high-resolution inelastic neutron- or x-ray
scattering techniques at elevated temperatures. �Anomalous
diffuse scattering due to phase transition precursor dynami-
cal effects has been measured in insulating crystals, for ex-
ample, in the inelastic neutron-scattering measurements on
CaCO3 of Harris et al.39 found anomalous scattering with a
strong temperature dependence, which was shown to be re-
lated to a high-pressure phase transition due to a soft mode at
the F point�.

The thermodynamic stability of the rutile phase of TiO2
with respect to the anatase polymorph has been the subject of
several studies in the literature �Ref. 21, and references
therein�. Despite a 10% difference in density the difference
between the ground-state energies of the two phases is ex-
tremely small—less than 0.05 eV for an LDA/PAW
calculation21—rather less than the variation among different
exchange correlation functionals within DFT and other
Hamiltonians. However, a rigorous prediction of relative sta-
bility must be based on the thermodynamic free energy and
include the effect of vibrational entropy. We wish to empha-
size that this contribution can be significant compared to the
electronic total-energy difference. The contribution due to
the soft acoustic phonon at 80 cm−1 in our calculations con-
tributes also approximately 0.05 eV at 300 K and the addi-
tional lowering due to the anomalous soft cigar-shaped re-
gion can be estimated at roughly 0.025 eV, again comparable
to the computed total-energy difference.

B. Long-ranged surface relaxation in (110) thin films

A phenomenon which has been much discussed in the
literature relating to simulation of TiO2 surface properties
concerns anomalous convergence behavior of thin film or
“slab” models containing a pair of �100� surfaces. Substantial
oscillations with thickness are seen in surface energies,
atomic displacements, electronic band edges, and work func-
tion, depending on whether there is an odd or even number
of trilayers in the slab. These oscillations decay slowly with
distance; convergence is only achieved with slabs of more
than ten layers or 32 Å thickness.3,37,40–48 This phenomenon
has hindered theoretical work on the TiO2 surface by making
accurately converged calculations computationally expen-
sive. The resulting lack of agreement on the precise quanti-
tative ab initio prediction of surface relaxation in TiO2 �110�
is particularly unfortunate in view of the controversy in the
experimentally measured surface structure using different
techniques which has only recently been resolved �see Refs.
35 and 49�. All of the aforementioned works contain quanti-

tative analyses of the oscillatory and long-ranged conver-
gence behavior but the only attempt at an explanation is put
forward by Bredow et al.37 That article analyzed the elec-
tronic structure of even- and odd-layered slab models and
discovered a larger peak in the electronic density of states
�DOS� of the even-layered slab corresponding to an en-
hanced hybridization between Ti 3d and O 2p states which
results in stronger bonding between the first and second lay-
ers. Though no spatial resolution of the DOS was presented,
this enhanced bonding presumably arises from the under co-
ordination of the surface oxygen atoms. Bredow et al. then
make the argument that the important distinction between
odd- and even-layered systems is the presence or absence of
a central plane of symmetry. However, this does not stand as
a complete explanation of the origin of the specific anoma-
lous behavior of TiO2 �110�. A satisfactory explanation ought
to include a reason why TiO2 �110� is unusual in this regard.
All oxide surfaces have undercoordinated oxygen which can
lead to enhanced bonding with lower layers. Furthermore,
with the exception of the surface layer atoms, where the
coordination is deficient, it is not clear whether changes in
electron density and DOS with depth are a primary cause of,
or a consequence of, geometric relaxation.

What is needed to complete the explanation is an account
of why a perturbation of the cleaved geometry at the surface
has an effect deep inside the bulk specifically in TiO2. In
other words, is there a structural instability in the bulk; a
high compliance which would allow long-ranged propaga-
tion of a displacement arising at the surface deep into the
bulk? We suggest that the bulk soft mode around q
= � 1

2 , 1
2 , 1

4 � provides just such a mechanism. The eigenvectors
of the soft mode for a 0.5% �110� uniaxial expansion lie
along the �110� direction for Ti ions, normal to the �110�
surface, with smaller antiphase displacements in almost the
same direction of the O ions. These are very similar to the
eigendisplacements of the unstrained system shown in Fig. 4
and in the supplementary material.32 Consequently, a layer
displacement perpendicular to the �110� surface of a slab,
with alternating odd/even sign, has a very large projection
onto the soft bulk eigenvector. Below the second layer, the
latest experiments35,49 and converged slab calculations agree
that the structure is very similar to bulk TiO2. Therefore bulk
crystal modes should give a reasonably good approximation
to the subsurface dynamics. The small, oscillatory layer re-
laxations are similar to those of the strained bulk calculation,
which resulted in a decrease in one acoustic mode to a fre-
quency close to zero.

We therefore propose the following explanation of the
anomalously slow and oscillatory convergence behavior with
slab thickness. Similar to Bredow et al.’s analysis the under-
coordination of the surface oxygen lone-pair orbitals results
in strengthened Ti-O bonding and shorter Ti-O distances be-
tween the topmost pair of planes and larger ones between
this plane and the immediately lower plane �as the experi-
mental results of Cabailh et al.35 show�. This pattern of dis-
placements has a near perfect projection onto the eigenvec-
tors of the soft mode of the bulk and the structure is therefore
extremely compliant to this displacement pattern. Conse-
quently the subsurface structure is distorted by a “frozen-in”
phonon and the distortion propagates with decaying ampli-
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tude to lower layers. This eigenvector displaces alternate lay-
ers in opposite directions. When in computational models
with slab geometry and an odd number of layers, the dis-
placements of the center layer are in phase and therefore
doubled, leading to an increase in energy. In the case of an
even number of layers, there is no center plane of atoms and
the mismatch between the displacements propagating from
the two surfaces is accommodated in the bonds, leading to a
lower energy penalty.

V. CONCLUSIONS

The lattice dynamics of TiO2 in the rutile structure dis-
plays a richness of behavior not fully revealed in earlier the-
oretical or experimental work. Our calculations sample the
full Brillouin zone and reveal that in unstrained TiO2 a TA
mode is extremely soft �less than 50 cm−1� over a substantial
volume of reciprocal-space, a cigar-shaped region with axis
along the line joining the halfway points of the �-M and
M-A lines. Neither experiment nor the single previous cal-
culation of phonon dispersion in rutile TiO2 sampled this
region, which explains why this mode has not been seen
before. It is suggested that this soft mode could be studied
using inelastic neutron or x-ray spectroscopy. The frequency
is predicted to be significantly strain and through thermal
expansion, temperature dependent. Therefore a temperature-
dependent study should demonstrate significant softening
and increased anharmonicity. We caution that this prediction
is valid within the quasiharmonic approximation but may be
modified within a full quantum treatment of the anharmonic
nuclear motion. Such a treatment lies beyond the scope of
the present work.

The low-frequency TA mode gives a non-negligible con-
tribution to the vibrational free energy of the rutile phase and
we conclude that careful ab initio thermodynamic studies of
the relative phase stability of the rutile and anatase polymor-
phs must include a full sampling of the Brillouin zone. The
common approximation of evaluating the vibrational free en-
ergy at only the � point gives a result in error by more than
25 meV, comparable to the difference in internal energy be-
tween the two phases.

The calculated behavior of the soft mode under strain
gives additional possibilities for comparison with experi-
ment. Like the � point A2u ferroelectric mode, the frequency
of the � 1

2 , 1
2 , 1

4 � TA mode decreases to zero under isotropic
strain of 0.5–0.75 %. But because it is doubly degenerate
and split by an anisotropic strain, the frequency decreases to
zero under both expansive and compressional strains along
�110�. While compression may be generated in conventional
high-pressure cells, either expansion or compression may be

generated by bending thin films grown on substrates.
We have also shown that in contrast to the behavior under

a �001� strain, the A2u ferroelectric mode does not become
soft under an expansive �110� strain and indeed is quite in-
sensitive to strain in this direction. Instead we predict that the
Raman-active B2g mode should soften under �110� uniaxial
expansion and its frequency should decrease to zero at
slightly over 1% strain. This softening may be observable
experimentally using Raman spectroscopy. The strong crys-
tal directionality dependence of these soft modes is perhaps
not surprising but does demonstrate that well-oriented single-
crystal samples will be required if such phenomena are to be
observed experimentally.

Finally, the soft-mode behavior under uniaxial strain helps
to explain some of the anomalous behavior discovered in
several previous theoretical studies of the �110� surfaces of
rutile TiO2. Structural relaxation in the near-surface region is
reasonably well approximated locally by a uniaxially
strained bulk and it is precisely at this value of the bulk
strain that the TA mode at � 1

2 , 1
2 , 1

4 � becomes soft. If we make
the reasonable assumption that the elastic behavior of this
region is modified in the same manner as of a similarly
strained bulk crystal we predict that the surface lattice dy-
namics should also exhibit a soft mode. Such a soft mode
could mediate long-ranged elastic interactions between sur-
faces in the slab geometry and cause the long-ranged oscil-
latory behavior with the number of layers in the model sys-
tem reported in previous studies.

Recently, a paper appeared �Ref. 50�, which also presents
ab initio DFPT calculations for rutile TiO2. LDA frequencies
tabulated at the � point in that article agree with the last
column of our Table II to 17 cm−1 or better. Dispersion
curves are also presented which are in close agreement with
our Fig. 1 in the segments common to both and confirm the
features we discuss in Sec. III B. Those authors did not com-
pute dispersion along the M-A line or anywhere where the
anomalous softening is strong. Interestingly the dip halfway
along �-Z which we attribute to the end point of the cigar-
shaped low-frequency region is also visible in their Fig. 2.
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